Unit 13

Analysis of Clocked Sequential Circuits

Outline

- A sequential parity checker
- Analysis by signal tracing and timing charts
- State tables and graphs
- General models for sequential circuits

A Sequential Parity Checker (1/4)

| Parity bit: | odd parity | | | even parity |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | 0000000 | 1 | 0000000 | 0 |
| | 0010000 | 0 | 0010000 | 1 |
| | 1001101 | 1 | 1001101 | 0 |

X synchronous with Clock,
Input number of 1 odd $\Rightarrow \mathrm{Z}=1$
even $\Rightarrow Z=0$

A Sequential Parity Checker (2/4)

$\begin{array}{ll}2 \text { states required } & \mathrm{S}_{0} \text { : even number of } 1 \text { received } \\ & \mathrm{S}_{1} \text { : odd number of } 1 \text { received }\end{array}$

Present	Next State		Present Output	Use T F/F to implement
State	$X=0$	$X=1$		
S_{0}	S_{0}	S_{1}	0	$\mathrm{S}_{0}=0$
S_{1}	S_{1}	S_{0}	1	$\mathrm{S}_{1}=1$

	Q^{+}			T		
Q	$X=0$	$X=1$	$X=0$	$X=1$	Z	
0	0	1	0	1	0	
1	1	0	0	1	1	

A Sequential Parity Checker (3/4)

	\mathbf{Q}^{+}	T		
Q	$X=0 \quad X=1$	$X=0$	$X=1$	Z
0	$0 \quad 1$	0	1	0
1	10	0	1	1
$Q{ }^{+}{ }^{X} 001$				
	0 0 1			
	110 1			
T				
$T=X$				

$$
\begin{aligned}
& T=Q^{\prime} X+Q X=X \\
& Z=Q
\end{aligned}
$$

A Sequential Parity Checker (4/4)

Use D F/F to implement

	\boldsymbol{Q}^{+}			\boldsymbol{D}		
Q	$X=0$	$X=1$	$X=0$	$X=1$	Z	
0	0	1	0	1	0	
1	1	0	1	0	1	

Analysis by Signal Tracing and Timing Charts (1/4)

I. Moore Machine: Outputs are functions of the present states only

State determined \neg Output determined

Outputs are state variables

Outputs are associated with states

Analysis by Signal Tracing and Timing Charts (2/4)

II. Mealy Machine:

Outputs are functions of both present states and inputs

Analysis by Signal Tracing and Timing (3/4)

Analysis of Moore Machine: Output changes only after clock pulse A, B initial state : 0, 0 (reset)

$\mathrm{X}=\begin{array}{lllll}0 & 1 & 1 & 0 & 1\end{array}$
$\mathrm{A}=\begin{array}{llllll}0 & 1 & 0 & 1 & 0 & 1\end{array}$
$\mathrm{B}=\begin{array}{llllll}0 & 0 & 1 & 1 & 1 & 1\end{array}$
Z = (0) $11 \begin{array}{lllll}1 & 0 & 1 & 0\end{array}$

Analysis by Signal Tracing and Timing (4/4)

Analysis of Mealy Machine: Output changes at either input changes
 or state changes

A, B initial state : 0, 0 (reset)

$$
\begin{array}{lllllll}
\mathrm{X}= & 1 & 0 & 1 & 0 & 1 & \\
\mathrm{~A}= & 0 & 0 & 0 & 1 & 1 & 0 \\
\mathrm{~B}=0 & 1 & 1 & 1 & 1 & 0 \\
\mathrm{Z}=1(0) & 1 & 0(1) & 0 & 1 &
\end{array}
$$

State Tables and Graphs (1/24)

Construct state tables and graphs from logic circuits
Moore machine

1. Determine the F / F input equation \& the circuit output equation

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{A}}=\mathrm{X} \oplus \mathrm{~B}^{\prime} \quad \mathrm{D}_{\mathrm{B}}=\mathrm{X}+\mathrm{A} \\
& \mathrm{Z}=\mathrm{A} \oplus \mathrm{~B}
\end{aligned}
$$

State Tables and Graphs (2/24)

2. Derive the next-state equations

$$
\begin{aligned}
& \mathrm{A}^{+}=\mathrm{D}_{\mathrm{A}}=\mathrm{X} \oplus \mathrm{~B}^{\prime} \\
& \mathrm{B}^{+}=\mathrm{D}_{\mathrm{B}}=\mathrm{X}+\mathrm{A}
\end{aligned}
$$

3. Plot a next-state map

$A B{ }^{\text {X }}$	0	1
00	1	0
01	0	1
11	0	1
10	1	0

State Tables and Graphs (3/24)

4. Combine all next-state maps to form the state table $\mathrm{A}^{+} \mathrm{B}^{+}$

AB	$\mathrm{X}=0$	$\mathrm{X}=1$	Z
00	10	01	0
01	00	11	1
11	01	11	0
10	11	01	1

Present state		Next state		Present
state	$\mathrm{X}=0$		$\mathrm{X}=1$	output (Z)
S_{0}	$\mathbf{0 0}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{1}$	0
$\mathrm{~S}_{1}$	$\mathbf{0 1}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{2}$	1
$\mathrm{~S}_{2}$	$\mathbf{1 1}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	0
$\mathrm{~S}_{3}$	$\mathbf{1 0}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	1

5. Corresponding state graph (Moore)

State Tables and Graphs (4/24)

6. Construction of timing chart

State Tables and Graphs (5/24)

11
A, B initial state : 0, 0 (reset)

| $\mathrm{X}=0$ | 1 | 1 | 0 | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~A}=0$ | 1 | 0 | 1 | 0 | 1 |
| $\mathrm{~B}=0$ | 0 | 1 | 1 | 1 | 1 |
| $\mathrm{Z}=(0)$ | 1 | 1 | 0 | 1 | 0 |

State Tables and Graphs (6/24)

A, B initial state : 0, 0 (reset)

| $\mathrm{X}=0$ | 1 | 1 | 0 | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~A}=0$ | 1 | 0 | 1 | 0 | 1 |
| $\mathrm{~B}=0$ | 0 | 1 | 1 | 1 | 1 |
| $\mathrm{Z}=(0)$ | 1 | 1 | 0 | 1 | 0 |

Unit 13

State Tables and Graphs (7/24)

Mealy machine

1. Determine the F / F input equation \& the circuit output equation

$$
\left\{\begin{array}{l}
\mathrm{J}_{\mathrm{A}}=\mathrm{XB}, \mathrm{~K}_{\mathrm{A}}=\mathrm{X} \\
\mathrm{~J}_{\mathrm{B}}=\mathrm{X}, \mathrm{~K}_{\mathrm{B}}=\mathrm{XA}
\end{array}\right\} \quad \mathbf{Z}=\mathbf{X}^{\prime} \mathbf{A}^{\prime} \mathbf{B}+\mathbf{X} \mathbf{B}^{\prime}+\mathbf{X A}
$$

State Tables and Graphs (8/24)

2. Derive the next-state equations

$$
\begin{aligned}
& \mathbf{A}^{+}=\mathbf{J}_{\mathbf{A}} \mathbf{A}^{\prime}+\mathbf{K}_{\mathbf{A}}{ }^{\prime} \mathbf{A}=\mathbf{X} \mathbf{B} \mathbf{A}^{\prime}+\mathbf{X}^{\prime} \mathbf{A} \\
& \mathbf{B}^{+}=\mathbf{J}_{\mathbf{B}} \mathbf{B}^{\prime}+\mathbf{K}_{\mathbf{B}}^{\prime} \mathbf{B}=\mathbf{X} \mathbf{B}^{\prime}+\left(\mathbf{A}^{\prime}+\mathbf{X}^{\prime}\right) \mathbf{B}=\mathbf{X} \mathbf{B}^{\prime}+\mathbf{X}^{\prime} \mathbf{B}+\mathbf{A}^{\prime} \mathbf{B}
\end{aligned}
$$

3. Plot a next-state map

X	0	1
AB	0	1
00	0	0
01	0	1
11	1	0
10	1	0
		${ }^{+}$

X		
AB	0	1
00	0	1
01	1	1
11	1	0
10	0	1
		${ }^{+}$

X	0	1
AB	0	1
00	0	1
01	1	0
11	0	1
10	0	1

State Tables and Graphs (9/24)

4. Combine all next-state maps to form the state table

AB	$\mathrm{A}^{+} \mathrm{B}^{+}$		Z	Present state	Next state		Present Output (Z)	
	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0 \mathrm{X}=1$		X=0	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
00	00	01	0	S 0	S 0	S_{1}	0	1
01	01	11	10	S_{1}	S_{1}	S_{2}	1	0
11	11	00	0	S_{2}	S_{2}	S 0	0	1
10	10	01	0	S_{3}	S 3	S 1	0	1

State Tables and Graphs (10/24)

5. Corresponding state graph (Mealy)

Present state	Next state		Present Output (Z)	
S_{0}	$\mathrm{~S}_{0}$	$\mathrm{~S}_{1}$	0	1
$\mathrm{~S}_{1}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	1	0
$\mathrm{~S}_{2}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{0}$	0	1
$\mathrm{~S}_{3}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{1}$	0	1

State Tables and Graphs (11/24)

6. Construction of timing chart

$X=1$	01	01
$A=0$	00	110
$B=0$	11	110
$Z=1(0)$	$10(1)$	01

State Tables and Graphs (12/24)

Analysis

$\mathrm{X}=1 \quad 01 \quad 01$
$\mathrm{A}=0 \quad 00 \quad 110$
$\begin{array}{lll}\mathrm{B}=0 & 11 & 110\end{array}$
$\mathrm{Z}=1$ (0) 10 (1) 01

State Tables and Graphs (18/24)

- Serial Adder

Adds two n-bit binary numbers and

$$
Y=y_{n-1} \ldots y_{1} y_{0}
$$

(a) With D flip-flop

$$
X=x_{n-1} \ldots x_{1} x_{0}
$$

x_{i}	y_{i}	c_{i}	c_{i+1}	s_{i}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

State Tables and Graphs (19/24)

- Timing diagram for a serial adder $10011+00110=11001$, final carry=0

State Tables and Graphs (20/24)

- The state graph for a serial adder

State Tables and Graphs (21/24)

A 2-input, 2-output example

Present state	Next state					Present output ($\mathrm{Z}_{1} \mathrm{Z}_{2}$)				
	$\mathrm{X} 1 \mathrm{X} 2=$	00	01	10	11	$\mathrm{X} 1 \mathrm{X} 2=$	00	01	10	11
S_{0}		S3	S2	S_{1}	S_{0}		00	10	11	01
S_{1}		So	S 1	S_{2}			10	10	11	11
S_{2}			So	S_{1}			00	10	11	01
S_{3}		S2	S2	S 1	So		00	00	01	01

State Tables and Graphs (22/24)

State Tables and Graphs (23/24)

1. When constructing timing charts, note that a state change can only occur after the rising (or falling) edge of the clock
2. The input will normally be stable immediately before and after the active clock edge
3. For a Moore circuit, the output can change only when the state changes, but for a Mealy circuit, the output can change when the input changes as well as when the state changes
4. False outputs are difficult to determine from the state graph, so use either signal tracing through the circuit or use the state table when constructing timing charts for Mealy circuits

State Tables and Graphs (24/24)

5. When using a Mealy state table for constructing,
(a) For the first input, read the present output and plot it
(b) Read the next state and plot it (following the active edge of the clock)
(c) Go to the row in the table which corresponds to the next state and read the output under the old input column and plot it (false output??)
(d) Change to the next input and repeat steps (a), (b), and (c)
6. For Mealy circuits, the best time to read the output is just before the active edge of the clock, because the output should always be correct at that time

General Models for Sequential Circuits (1/5)

- Sequential circuit
- A sequential circuit can be divided into two parts
- The Flip-Flops which serve as memories for the circuit
- The combinational logic which realizes the input functions for the Flip-Flops and the output functions
- The combinational logic may be implemented with gates, with a ROM, or with a PLA

General Models for Sequential Circuits (2/5)

- General model for a synchronous sequential machine

Flip-flops (Memories)

General Models for Sequential Circuits (3/5)

- General model for Mealy circuit

General Models for Sequential Circuits (4/5)

- The combinational subcircuit realizes the n output functions and the k next-state functions which serve as inputs to the D Flip-Flop

$$
\left.\begin{array}{l}
\mathrm{Z}_{1}=\mathrm{f}_{1}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{m}}, \mathrm{Q}_{1}, \mathrm{Q}_{2}, \ldots, \mathrm{Q}_{k}\right) \\
\mathrm{Z}_{2}=\mathrm{f}_{2}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{m}}, \mathrm{Q}_{1}, \mathrm{Q}_{2}, \ldots, \mathrm{Q}_{\mathrm{k}}\right) \\
\vdots \\
\mathrm{Z}_{\mathrm{n}}=f_{\mathrm{n}}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{m}}, \mathrm{Q}_{1}, \mathrm{Q}_{2}, \ldots, \mathrm{Q}_{\mathrm{k}}\right)
\end{array}\right\} n \text { output functions } .
$$

General Models for Sequential Circuits (5/5)

- General model for clocked Moore circuit using Clocked D Flip-Flops

